Electronic Laboratory II

EXPERIMENT 1 Digital to Analog (DAC) Conversion

OBJECTIVE

Purpose of the experiment is to obtain analog voltage and/or current from digital signal.

EQUIPMENT REQUIRED

Components 1*LF351 OPAMP 5*20KΩ 15*10KΩ 4*switch

PRELİMİNARY WORK

Study OPAMP summing amplifiers and review how to use it as a Digital to Analog Converter (DAC) by binary weighted resistors and R-2R ladder arrangement.

BACKGROUND INFORMATION

A digital to analog converter (DAC) converts a digital signal to an analog voltage or current output. Many types of DACs are available and usually switches, resistors, and op-amps are used to implement the conversion. In Figure 1, a summing amplifer with binary weighted resistors are given.

Figure 1. DAC by opamp summing amplifer with binary weighted resistors

R-2R Ladder is another type of DAC based on the opamp summing amplifier similarly as seen in Figure 2. Each bit corresponds to a switch:

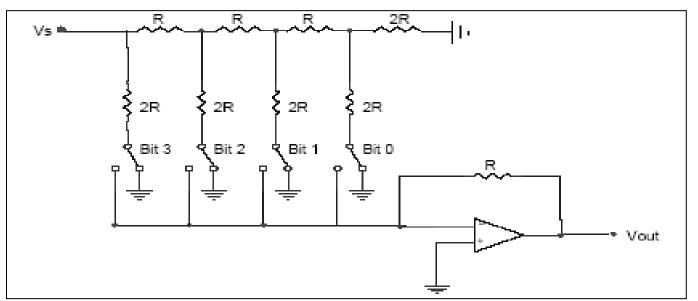


Figure 2. DAC by R-2R Ladder

If the bit is high, the corresponding switch is connected to the inverting input of the op-amp. If the bit is low, the corresponding switch is connected to ground.

bn means Bit n, hence;

If bit n is set, *b*n=1 If bit n is clear, *b*n=0

For a 4-Bit R-2R Ladder, output is equal to;

$$V_{\text{out}} = -V_{\text{ref}} \left(b_3 \frac{1}{2} + b_2 \frac{1}{4} + b_1 \frac{1}{8} + b_0 \frac{1}{16} \right)$$

For general n-Bit R-2R Ladder , output is equal to;

$$V_{\text{out}} = -V_{\text{ref}} \sum_{i=1}^{n} b_{n-i} \frac{1}{2^{i}}$$

Experimental Procedure:

- 1) Construct the circuit in Figure 1 and fill in Table 1 (use 10k resistors in parallel configurations).
- 2) Construct the circuit in Figure 3 and fill in Table 2.

Sw0	<i>Sw1</i>	Sw2	Sw3	iout i	Vo
closed	open	open	open		
open	closed	open	open		
closed	closed	open	open		
open	open	closed	open		
closed	open	closed	open		
open	closed	closed	open		
closed	closed	closed	open		
open	open	open	open		
closed	open	open	closed		
open	closed	open	closed		
closed	closed	open	closed		
open	open	closed	closed		
closed	open	closed	closed		
open	closed	closed	closed		
closed	closed	closed	closed		

Table 1. Results for the circuit in Figure 1.

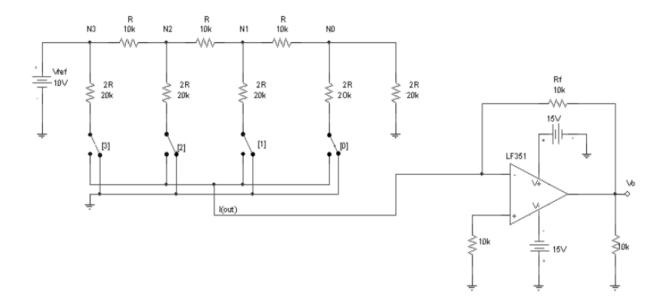


Figure 3. R-2R ladder circuit to be constructed

Sw0	Sw1	Sw2	Sw3	i _{out}	Vo
closed	open	open	open		
open	closed	open	open		
closed	closed	open	open		
open	open	closed	open		
closed	open	closed	open		
open	closed	closed	open		
closed	closed	closed	open		
open	open	open	open		
closed	open	open	closed		
open	closed	open	closed		
closed	closed	open	closed		
open	open	closed	closed		
closed	open	closed	closed		
open	closed	closed	closed		
closed	closed	closed	closed		

Table 2. Results for the circuit in Figure 3.

Conclusion : Compare ideal and experimental results. What is the rate of the difference? Explain its reasons.