
Pipelining

CSE 410, Spring 2005

Computer Systems

http://www.cs.washington.edu/410

Execution Cycle

1. Instruction Fetch

2. Instruction Decode

3. Execute

4. Memory

5. Write Back

IF ID EX MEM WB

IF and ID Stages

1. Instruction Fetch

» Get the next instruction from memory

» Increment Program Counter value by 4

2. Instruction Decode

» Figure out what the instruction says to do

» Get values from the named registers

» Simple instruction format means we know which
registers we may need before the instruction is
fully decoded

Simple MIPS Instruction Formats

op code word offset

6 bits 26 bits

op code source 1 source 2 dest shamt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op code base reg src/dest offset or immediate value

6 bits 5 bits 5 bits 16 bits

R

I

J

EX, MEM, and WB stages

3. Execute

» On a memory reference, add up base and offset

» On an arithmetic instruction, do the math

4. Memory Access

» If load or store, access memory

» If branch, replace PC with destination address

» Otherwise do nothing

5. Write back

» Place the results in the appropriate register

• IF get instruction at PC from memory

• ID determine what instruction is and read
registers

» 000000 with 100000 is the add instruction

» get contents of $s1 and $s2 (eg: $s1=7, $s2=12)

• EX add 7 and 12 = 19

• MEM do nothing for this instruction

• WB store 19 in register $s0

Example: add $s0, $s1, $s2

op code source 1 source 2 dest shamt function

000000 10001 10010 10000 00000 100000

Example: lw $t2, 16($s0)

• IF get instruction at PC from memory

• ID determine what 010111 is

» 010111 is lw

» get contents of $s0 and $t2 (we don’t know that we
don’t care about $t2) $s0=0x200D1C00, $t2=77763

• EX add 16 to 0x200D1C00 = 0x200D1C10

• MEM load the word stored at 0x200D1C10

• WB store loaded value in $t2

op code base reg src/dest offset or immediate value

010111 10000 01000 0000000000010000

IF ID EX MEM WB

IF ID EX MEM WB

1 2 3 4 5 6 7 8 9 10

inst 1

inst 2

Latency & Throughput

Latency—the time it takes for an individual instruction to execute

What’s the latency for this implementation?

 One instruction takes 5 clock cycles

 Cycles per Instruction (CPI) = 5

Throughput—the number of instructions that execute per unit time

What’s the throughput of this implementation?

 One instruction is completed every 5 clock cycles

 Average CPI = 5

A case for pipelining

• If execution is non-overlapped, the functional
units are underutilized because each unit is used
only once every five cycles

• If Instruction Set Architecture is carefully
designed, organization of the functional units
can be arranged so that they execute in parallel

• Pipelining overlaps the stages of execution so
every stage has something to do each cycle

Pipelined Latency & Throughput

• What’s the latency of this implementation?

• What’s the throughput of this implementation?

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

inst 1

inst 2

inst 3

inst 4

inst 5

Pipelined Analysis

• A pipeline with N stages could improve
throughput by N times, but

» each stage must take the same amount of time

» each stage must always have work to do

» there may be some overhead to implement

• Also, latency for each instruction may go up

» Within some limits, we don’t care

Throughput is good!

increasing
number of
instructions

increasing time

overlapped

sequential

MIPS ISA: Born to Pipeline

• Instructions all one length

» simplifies Instruction Fetch stage

• Regular format

» simplifies Instruction Decode

• Few memory operands, only registers

» only lw and sw instructions access memory

• Aligned memory operands

» only one memory access per operand

Memory accesses

• Efficient pipeline requires each stage to
take about the same amount of time

• CPU is much faster than memory hardware

• Cache is provided on chip

» i-cache holds instructions

» d-cache holds data

» critical feature for successful RISC pipeline

» more about caches next week

The Hazards of Parallel Activity

• Any time you get several things going at once,
you run the risk of interactions and
dependencies

» juggling doesn’t take kindly to irregular events

• Unwinding activities after they have started
can be very costly in terms of performance

» drop everything on the floor and start over

Design for Speed

• Most of what we talk about next relates to the
CPU hardware itself

» problems keeping a pipeline full

» solutions that are used in the MIPS design

• Some programmer visible effects remain

» many are hidden by the assembler or compiler

» the code that you write tells what you want done,
but the tools rearrange it for speed

Pipeline Hazards

• Structural hazards

» Instructions in different stages need the same
resource, eg, memory

• Data hazards

» data not available to perform next operation

• Control hazards

» data not available to make branch decision

Structural Hazards

• Concurrent instructions want same resource
» lw instruction in stage four (memory access)

» add instruction in stage one (instruction fetch)

» Both of these actions require access to
memory; they would collide if not designed for

• Add more hardware to eliminate problem

» separate instruction and data caches

• Or stall (cheaper & easier), not usually
done

Data Hazards

• When an instruction depends on the results
of a previous instruction still in the pipeline

• This is a data dependency

add $s0, $s1, $s2

add $s4, $s3, $s0

$s0 is

read here

IF ID EX MEM WB

IF ID EX MEM WB

$s0 is

written here

Stall for register data dependency

• Stall the pipeline until the result is available

» this would create a 3-cycle pipeline bubble

add s0,s1,s2

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstall

Read & Write in same Cycle

• Write the register in the first part of the clock
cycle

• Read it in the second part of the clock cycle

• A 2-cycle stall is still required

add s0,s1,s2

add s4,s3,s0 IF stall

IF ID EX MEM WB

ID EX MEM WB

write $s0

read $s0

Solution: Forwarding

• The value of $s0 is known internally after cycle 3
(after the first instruction’s EX stage)

• The value of $s0 isn’t needed until cycle 4 (before
the second instruction’s EX stage)

• If we forward the result there isn’t a stall

add s0,s1,s2

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WB

Another data hazard

• What if the first instruction is lw?

• s0 isn’t known until after the MEM stage

» We can’t forward back into the past

• Either stall or reorder instructions

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WB

NO!

Stall for lw hazard

• We can stall for one cycle, but we hate to stall

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstall

Instruction Reorder for lw hazard

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

sub t4,t2,t3 IF ID EX MEM WB

IF ID EX MEM WB

sub t4,t2,t3

• Try to execute an unrelated instruction
between the two instructions

Reordering Instructions

• Reordering instructions is a common
technique for avoiding pipeline stalls

• Static reordering
» programmer, compiler and assembler do this

• Dynamic reordering
» modern processors can see several instructions

» they execute any that have no dependency

» this is known as out-of-order execution and is
complicated to implement, but effective

