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COMPUTER 
RECREATIONS 

How to handle numbers with thousands 

of digits, and why one might want to 

by Fred Gruenberger 

EDITOR'S NOTE: The author of "Com
puter Recreations" this month, Fred 
Gruenberger, is professor of comput
er science at California State University 
at Northridge. Gruenberger's acquaint
ance with computing machinery began 
more than 40 years ago; he has since 
published 28 books on computing, and 
from 1973 to 1981 he edited the month
ly magazine Popular Computing. 

Beginning next month the "Computer 
Recreations" department will be con
ducted by A. K. Dewdney, associate 
professor of computer science at the 
University of Western Ontario. Dewd
ney's chief professional interests are in 
discrete mathematics and the theory of 
computation, but he is known to many 
readers for his investigations of two
dimensional science and technology, de
scribed in this space by Martin Gardner 
(see " Mathematical Games"; SCIENTIF
IC AMERICAN, July, 1980). Dewdney's 
elaboration of this work (The Planiverse: 
Computer Contact with a Two-dimensional 
World) was recently published by Po

seidon Press, and a collection of his es
says on topics in computer science, The 
Turing Omnibus, will be published next 
year by Computer Science Press. 

I
f you have a calculator with a key for 

squaring a number, try this: enter 
the n um ber 1.0000001 and press the 

square key 27 times. The procedure is 
equivalent to raising the initial number 
to the 134,217, 728th power. The correct 
result, accurate to 10 significant digits, is 
674,530.4707, but the calculator will al
most surely give a different answer. The 
problem is designed to reveal the preci
sion level of the machine. The table on 
page 24 gives the results obtained with 
several calculators and with versions of 
the BASIC and Fortran programming 
languages running on a few computers. 
None of the machines gets even seven 
digits correct. 

are limited in their size or precision by 
the number of digits the machine can 
display. Squaring, on the other hand, op
erates on the representation of a number 
stored in the. machine, which generally 
includes a few "guard digits," that is, 
extra digits that enter into each calcula
tion but are hidden from the operator. 
Thus if you calculate the square root of 
2 on a machine with an eight-digit dis
play and two guard digits, the result will 
be shown as 1.4142136 but stored in
ternally as 1.414213562. Pressing the 
square key should recover the original 
value 2.0000000, whereas mUltiplying 
1.4142136 by itself gives an answer of 
2.000000106. 

In most calculations an error in the 
seventh decimal place is of little conse
quence. Suppose, however, the calcula
tion is made in a computer program that 
will execute one sequence of instruc
tions if the value is exactly 2 but a dif-

NUMBER 
OF SQUARINGS POWER 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 5 12 

10 1024 
1 1  2048 
12 4096 
13 8192 
14 16384 
15 32768 
16 65536 
17 131072 
18 262144 
19 524288 
20 1048576 
2 1  2097152 
22 4 194304 
23 8388608 
24 16777216 
25 33554432 
26 67108864 

ferent sequence otherwise; the effect of 
any inaccuracy could be catastrophic. 
The safest way of avoiding this hazard is 
probably to round the calculated value 
to a known level of precision before test
ing it for eq uality with 2. In other cir
cumstances the stratagem of rounding 
offers no help. In the problem of repeat
edly squaring a decimal fraction the 
only way to improve the quality of the 
result is to maintain greater accuracy 
throughout all stages of the calculation. 

For most numerical work a precision 
level of eight or nine digits is ample. It 
should suffice for balancing a check
book provided the amounts involved 
are no greater than $1 million or so. No 
constant of nature is known with a pre
cision of more than 12 significant dig
its. Achieving even moderate precision 
in the final result, however, may call 
for much higher precision in the course 
of the calculation. When 1.0000001 is 
squared 27 times, getting 10 digits cor
rect requires that all calculations along 
the way be accurate to 15 places. 

An example of a calculation in which 
I\. the need for high precision is abso
lute is the continuing search for larger 
prime numbers. For many years, before 
the development of the electronic digital 
computer, the largest number known to 
be prime was 2127 - 1, which has 39 dig
its in decimal notation. With the aid of 
the computer, starting in 1952, the rec
ord has been broken 16 times; currently 
it is a number (2132049 - 1) of 39,751 dig
its. In testing for primality (that is, in de
termining whether a number can be di
vided by any numbers other than 1 and 
itself) all arithmetic must be exact. 

EIGHT·DIGIT 15-DIGIT 
PRECISION PRECISION 

10.000001 1 .0000001 0000000 
1.0000002 1 .0000002000000 1 
1.0000004 1.00000040000006 
1.0000008 1.00000080000028 
1 0000016 1.00000160000120 
1.0000032 1.00000320000496 
1 0000064 1.000006400020 16 
1.0000128 100001280008128 
1.0000256 1 00002560032640 
1.0000512 1.00005120130818 
10001024 1.000 10240523794 
1.0002048 1.0002048209627 1 
1.0004096 1.00040968387705 
1 0008192 1 00081953559497 
1.0016391 1.00163974282853 
1 0032809 1.003282 17441361 
1.0065726 1 00657512149610 
1 0131884 1013 19347521490 
1.0265507 102656 101821804 
1.0538063 1.05382752412486 
1.1105077 1.1 1055245060312 
1.2332274 1 .23332674554061 
1.5208498 1.52109486126578 
2.3129841 2.31372957696917 
5.3498954 5.35334455534193 

28.62 1381 28.6582979282091 
819. 18345 821.298040141993 

With most electronic calculators the 
operation of squaring is not eq uivalent 
to entering a number and mUltiplying it 
by itself. In the latter operation the fac
tors that enter into the multiplication 

27 134217728 671061.52 674530.470741078 

Result of squaring 1.0000001 repeatedly with limited precision 

19 
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The TeleVideo IBM PC 
The best hardware for 

TeleVideo versus IBM. Make a few 
simple comparisons and you'll find 
there is no comparison. 

RUNS IBM SOFTWARE. 
With the TeleVideo® IBM Compatible 
line- pc, XT and portable com
puters-you'll get the most out of all 
the most popular software written 
for the IBM" PC-more than 3,000 
programs. 

Because every TeleVideo Personal 
Computer offers the highest level of 
IBM compatibility on the market 

THE BEST HARDWARE FOR THE BEST PRICE. 
Features Tele-PC IBM PC Tele-XT IBMXT 
Monitor YES OPTIONAL YES OPTIONAL 
Screen Size 14" 12" 14" 12" 
Tilt Screen YES NO YES NO 
Quiet Operation YES (NO FAN) NO YES NO 
Memory 128K 128K OPTION 256K 256KOPTION 
Graphics Display YES OPTIONAL YES OPTIONAL 

(640 x 200 resolution) 
Pri nter Port YES OPTIONAL YES OPTIONAL 
Communication Port YES OPTIONAL YES YES 
MS™DOS/BASIC' YES OPTIONAL YES OPTIONAL 
System Expansion Slot YES YES YES YES 
RGB and Video Port YES OPTIONAL YES OPTIONAL 

Typical System Price $2995 $3843 $4995 $5754 
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compatibles. 
theoestso are.· 

and has the standard -not optional 
-features you need to take full 
advantage of every job your software 
can do. 

Study the chart at the left. It 
proves thatTeleVideo-not IBM
offers the best hardware for the 
best price. 

N ote thatTeleVideo's ergonomic 
superiority over I BM extends from 
fully sculpted keys and a comfort
able palm rest to a 1 4-inch, no glare 
screen that tilts at a touch. 

THE BEST MICROCHIPS. 
What is perhaps most impressive 
about the TeleVideo IBM PC Com
patible can be found deep within 
its circuitry. We use the same 8088 
central processing unit that runs an 
IBM Pc. But we also employ new 
VLS I (Very Large Scale Integration) 
microchips that are designed and 

built exclusively for TeleVideo. 
T hese interface more 

efficiently with the 
powerful 8088 and yield 

numerous benefits. 

For example, our tiny 
custom chips do the 

wprk of many of the larger, 
more expensive circuit boards in 

an IBM Pc. So we can offer a com
puter system that comes in one 
attractive, integrated case, is ready 
to run and occupies less desk space. 
A computer that edges out IBM's 
added-cost component system for 
reliability, ease of service and 
purchase simplicity. 

Fewer circuit boards to cool also 
allowed us to eliminate the noisy, 
irritating fan IBM and most other 
PCs force you to put up with. And 

TeleVideo compatibles accept 

THE BEST PORTABLE FOR THE BEST PRICE. 
Features 
High Capacity Storage 
2nd Disk Drive 
Quiet Operation (No Fan) 
Ergonomic Display 
Communication Port 
International Power Supply 
MSTM-DOS 2.11 
Graphics Display 

. Typical System Price 
any IBM hardware options without 
modification. 

THE BEST LINE. 
But the Tele- PC is only one element 
of the TeleVideo IBM PC Compatible 
line. 

T he TeleVideo XT is the best hard
ware for users of popular IBM XT 
software who would appreciate an 
extra 10 megabytes of storage 
capacity along with the advantages 
listed on the preceding chart. 

As the chart above demonstrates, our 
portable IBM compatible computer, 
the T PC I I, is far and away better hard
ware than COM PAQ:" Better hard
ware-standard-at a better price. 

TPC II COMPAQ 
YES NO 
YES OPTIONAL 
YES NO 
YES NO 
YES OPTIONAL 
YES NO 
YES NO 
YES YES 

$2995 $3710 
THE BEST MANUFACTURER. 

TheTeleVideo IBM PC Compatible 
line is made by the world leader 
in multi-user computer systems 
and the number one independent 
manufacturer of terminals. 

Our compatibles are avai lable 
at participating ComputerLand and 
Entre (caI1800-HI-ENTRE) dealers 
or you may call 800-538-8725 for the 
dealer nearest you. In California, 
call 408-745-7760. 

Before you invest, make a few 
simple comparisons. You'll find that 
TeleVideo-not IBM or COM PAQ 
-has the best hardware for the best 
software. At the best price. 
IBM j<; ,I rt'giSil'H>O trademark oj Intt'rnali{milll�usim'ss Ma("him's. 
MS 1 ... 1 tfildl'mark 01 MicroSoft Corporation. GW BasI(" is a r('glstt'H'Ci 
tr,ld('nl<lrk oi MicroSoit Corporation. COMPAQ is a tradt'nl,uk oj 
COMPAQ Computt'r Corporation 

TeleVidea 
Personal Computers 
O.TeleVideo Systems, Inc. 
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Computing the value of pi is another 
problem of long standing that calls for 
very high precision. The record was held 
for many years by the British mathe
matician William Shanks; working by 
hand, he calculated 528 correct digits 
(and another 179 incorrect ones). Pi is 
now known to 8,388,608 digits. 

Given that the mechanization of high
precision arithmetic began more than 
30 years ago and that computing power 
has been getting cheaper and becoming 
more widely available ever since, one 
might expect the list of known results 
to be quite extensive. Actually the list 
of known high-precision numbers is re
markably short: 

The square root of 2 is known to one 
million decimal places, and the cube 
root of 16 is known to 1,000 places. 

The real root of Wallis' equation, 
X3 - 2X - 5 = 0, is known to 4,000 dig
its. (The equation is one chosen by the 
17th-century British savant John Wallis 
for an illustration of Newton's method 
for the numerical solution of equations; 
it has served since as a test of many oth
er methods of approximation.) 

Harry L. Nelson of the Lawrence Liv
ermore National Laboratory (who once 
held the record with David Slowinski 
of the same institution for the largest 
known prime number) has calculated 
the factorial of one million, namely the 
product 1,000,000 X 999,999 X ". X 
2 X 1. The result has 5,565,709 digits 
and fills a stack of standard printout 
paper five inches high. 

1.0000001 

1.0000002000000 1 

A problem known as the 196 problem 
has been carried through 50,000 stages 
of calculation, at which point the num
bers being dealt with are 21,000 digits 
long. Another tantalizing problem, the 
3N + 1 problem, has been investigat
ed for isolated values with as many as 
1,000 digits. Both problems are dis
cussed in more detail below. 

The Fibonacci sequence (1, 1, 2, 3, 5, 
8, 13, 21 . . .  , in which each term is the 
sum of the two preceding terms) has 
been calculated explicitly for the first 
10,000 terms. At the 10,000th term the 
numbers have more than 2,000 digits. 

Euler's number, e, the base of the nat
ural'logarithms, has been calculated to 
more than 125,000 decimal places. 

A few other isolated results might be 
cited. For example, R. William Gosper 
of Symbolics, Inc., employing a method 
based on the manipulation of continued 
fractions, has calculated 2,800 digits of 
the seventh root of 306. (The root has no 
special significance; the task was select
ed at random as a test of the method.) 

Most of the problems listed above are 
of the kind in which the need for 

high precision is intrinsic; they are chal
lenging just because they call for keep
ing track of more digits than most peo
ple can imagine ever needing. A high
precision problem that is commoner 
and more practical, and less artificial, 
comes up in solving for the roots of a 
quadratic equation (an equation that 
has the form AX2 + 8X + C = 0). The 

1 000000400000060000004000000 1 

1.0000008000002800000560000070000005600000280000008000000 1 

1.00000160000 1200000560000 182000043680008008001 14400012870001 1440000800800 
04368000182000005600000 12000000160000001 

22 

1.000003200004960004960003596002013760906 192336585705183028048806451225290 
24502579287473736471435656572278010804465722767143563473736225792852902448 
645122428048801051830033658560906192020 13760035960000496000004960000032000 
000 1 

1.00000640002016004 1664063537676245 19497443012166346168 12205996593289 1756 1 
10245601674235977955910720871542750 1663354524863006088759570934516 1 1268199 
1538318569142373529010725957 109077232359858708556491 166159373356797420 1 16 1  
43434357277218808573355568943751 110599510580696377806180968267449354037803 
9908345463896857916 1289551024136215303 14804648290 1272501914064547774155796 
97132 1757005849546165430 12 16 1994974368762451206353760041664000201600000640 
000001 

1.00001280008128034 1377066802645669423620652593817045586724716639752509356 
3706604966887868632339808586665878774084866 1692888859950737447654753345168 
0029637400737469957 105560072416700993009294401078544080725549 1 12523 1778992 
849980801309396592757494 1 13324438 1547633598449089802869082 1 180944687760178 
26651 186922820900475103999094028004541 163740697539733888428367675593254423 
047914478918 135752 102429288 1433616534591710408142 1677640174634634397085972 
8390095407066078 1524156253596638345132414037094689364780030653669917579320 
39263495546002578420990239 1880928345490689625104448618589291 19375002542434 
572320889769109362436235325985 15862472240337396250214803336301073293071392 
4088 1 17757 15 10 12 1069678262892429678985166947033041357598928186 137247128344 
637482304783585492600325645400029538693329144544905822301 13562493732890458 
57 150 156087070217497026618525795742361 122645664010668000034137600081280000 
1280000001 

Exact results for a few squarillgs of 1.0000001 

quantity B2 - 4AC, called the discrimi
nant of the eq uation, determines wheth
er the roots are real or imaginary. If the 
discriminant is positive, the roots are 
real; if it is negative, they are imaginary; 
if 82 - 4AC is exactly zero, the equa
tion has two equal roots. Hence even a 
small error in the evaluation of the dis
criminant can make a qualitative differ
ence in the solution of the equation. 

A similar sensitivity to small numeri
cal errors can develop in solving a sys
tem of simultaneous linear equations. 
Consider the system 

53.17X - 18.91Y - 5.67Z= - 174.65 
-12.65X + 36.16Y - 47.08Z = 298.59 
303.80X - 203.03Y + 112.89Z = -1769.02 

The system was constructed so that the 
three equations are satisfied by the val
ues X= -3, Y= 2 and Z= - 4, but 
those values do not represent a unique 
solution. Indeed, although it is not ap
parent from mere inspection, there can 
be no unique solution because two of 
the equations describe planes that are 
parallel to each other. (The third eq ua
tion of the set is eq ual to five times the 
first equation minus three times the sec
ond equation and so contributes no in
dependent information.) 

The impossibility of solving the equa
tions can be discovered by calculating 
the quantity called the determinant of 
the matrix of coefficients. The determi
nant of a matrix is evaluated by forming 
all possible combinations of elements 
that are in neither the same column nor 
the same row; the elements in each com
bination are multiplied, then the prod
ucts are summed. If the. determinant is 
found to be zero, the system of equa
tions has no solution and one knows to 
proceed no further (or, more important, 
one can arrange to have a computer pro
gram halt at this point). Here, however, 
a calculation of the determinant based 
on the scheme called basket weaving 
and using arithmetic accurate to nine 
digits gives an answer not of zero but of 
-.000202179. Other methods of evalu
ation may yield a correct result in this 
example but not in others; the point is, 
with nine-digit precision the result can
not be relied on. Moreover, the system 
of eq uations given here is a small one, 
with coefficients having no more than 
five significant digits; when the system is 
larger, the problem becomes acute. 

Many problems in number theory 
and other branches of mathemat

ics require extreme precision for the 
representation of very large integers. 
The 196 problem is an example. To 
work the problem start with any positive 
integer of two digits or more. Reverse 
the digits and add the reversed number 
to the original one. Now reverse the sum 
and add again, and continue the process 
until the result is a palindromic num-
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Todays Chevrolet 

Braggin'Wagon 
Cavalier Room for the one that didn't get away Chevrolet 
Cavalier Wagon has more total room than Ford Escort Wagon, Subaru DL, Nissan Sentra 
or Toyota Tercel wagons, so that means more comfort, more convenience and more 
cubic feet for you. 
More than just more room Cavalier wagon also gives you front-drive traction. And 
Cavalier's 2.0 Liter, high-compression engine with electronic fuel injection gives you more 
standard horsepower than Ford Escort Wagon or the three leading import wagons. 

Braggin' before it ever hits the road Before any Cavalier Wagon ever hits the 
road, it's already been through over 1,000 different inspections. Dedicated workers using 
computerized robots and lasers achieve a high level of precision fit and finish. T here's even 
a computer to check the computer's work. 

At Chevrolet we' re working to bring you the cars and trucks you want and need-that's 
what Taking Charge is all about. 
Some Chevrolets are equipped with engines produced by other GM 
divisions, subsidiaries, or affiliated companies worldwide. See your 
dealer for details. 

Let's get It together 
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CALCULATOR RESULT PERCENT ERROR 

Texas Instruments SR-52 674520.6053 .00146 

Hewlett-Packard 33. 67. 41 C 674494.0561 .00540 

Sharp Electronics EL506 674492.75 .00559 

Monroe Calculator 1930 674383.1672 .02183 

Texas Instruments 30 674363.69 .02473 

COMPUTER AND LANGUAGE 

Double-precision Fortran (CDC Cyber) 674530.5363 .00000973 

Eight-digit Fortran (CDC Cyber) 674530.5765 .00001568 

Apple II BASIC 22723.9709 96.63 114 

IBM Personal Computer BASIC 8850273. 1212 06423 

Ontel BASIC 8886690. 1217.46401 

Accuracy of some machines and programming languages in repeated squaring 

ber: one that reads the same forward 
and backward [see illustration below]. For 
most starting numbers a palindrome is 
reached very quickly; the series begin
ning with 195,. for example, ends after 
just four steps. The smallest number 
that seems never to become palindromic 
by this process is 196; as noted above, it 
has been tested through 50,000 steps. 
Among the first 100,000 integers there 
are 5,996 that apparently do not gener
ate a palindrome no matter how long the 
procedure is continued (although this 
conjecture has not been confirmed). 

The 3N + 1 problem was discussed 
here in January. Start with any positive 

193 194 195 196 
391 491 591 691 

1124 685 786 887 
4211 586 687 788 
5335 1271 1473 1675 

1721 3741 5761 
2992 5214 7436 

4125 6347 
9339 13783 

38731 
52514 
41525 
94309 
90349 

187088 
880781 

1067869 
9687601 

10755470 
07455701 
18211171 
17111281 
35322452 
25422353 
60744805 
50844706 

111589511 

integer N; if N is odd, replace it with 
3N + 1; if Nis even, replace it with N/2. 
Continue until N is equal to 1. For ex
ample, when the starting value of N is 9, 
the process yields 20 terms: 9, 28, 14, 7, 
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 
16, 8, 4, 2 and 1. This simple proced ure 
leads to many mysteries. Does the se
quence always terminate at 1, no matter 
what starting value of N is chosen? Is 
there any pattern to the number of steps 
required, that is, can a formula based on 
the value of N predict the number of 
steps required? For any chosen number 
of steps is there invariably an odd val
ue of N that generates a seq uence of 

197 198 199 200 
791 891 991 002 
988 1089 1190 202 
889 9801 0911 

1877 10890 2101 
7781 09801 1012 
9658 20691 3113 
8569 19602 

18227 40293 
72281 39204 
90508 79497 
80509 

171017 
710171 
881188 

Evaluation of the 196 problem for a few starting values 

24 

that length? (An even value of N with 
any specified path length can readily 
be found: it is 2 raised to a power of 1 
less than the path length.) 

In 1980 I proposed that the average 
number of terms to convergence in the 
3N + 1 problem is approximated by 
24.64D -101, where D is the number 
of digits in the starting value of N. The 
estimate was based on calculations 
made with numbers of up to about 200 

. digits, which I then thought were quite 
large. With a program for high-preci
sion arithmetic I have been able to check 
the conjecture for a few larger values. 
For a 1,000-digit number the formula 
predicts convergence in 25,539 steps. I 
found that when N is equal to the num
ber 1 . . .  (998 zeros) . . .  1, or 101000 + 1, 
the series descends to 1 in 23,069 steps. 
The number 55 . . .  (997 zeros) . . .  1 yields 
a series with 24,413 terms. Hence on 
this preliminary evidence it appears the 
average rate of convergence is stable 
and predictable. 

Another phenomenon first observed 
with small values of N that seems to 
persist with larger ones is a tendency for 
many consecutive values of N to gener
ate series of the same length. Indeed, 
such strings apparently become more 
prevalent as N increases. For exam
ple, the 230 consecutive integers begin
ning with 

912345678912345678900-
0000000000000000000001 

all generate series with 997 terms. (Note 
that the prediction of the empirical for
mula for this number is 959 terms.) 

The arithmetic operations that can be 
carried out directly by the central

processing unit of a typical microcom
puter offer only very limited precision. 
In many machines the only operations 
provided for explicitly are addition and 
subtraction of integers whose length is 
no more than 16 bits, or binary digits; 
in decimal notation the largest number 
that can be represented is 65,536, so that 
the level of precision is less than five 
decimal digits. Even with the most pow
erful computers precision of more than 
a few dozen digits can be attained only 
by means of a program that combines 
many elementary operations to break a 
large number down into smaller pieces. 

The flow charts on page 26 outline an 
algorithm for a specific high-precision 
calculation: the evaluation of the largest 
known prime number, 2132049 - 1. The 
procedure was created with a particu
lar microprocessor in mind, namely the 
6502, manufactured by MOS Technolo
gy, which is found in computers made 
by Apple Computer Inc., Commodore 
Business Machines, Inc., and other man
ufacturers. It would be easy to adapt 
the algorithm to other microprocessors. 

Perhaps the most fundamental dec i-

© 1984 SCIENTIFIC AMERICAN, INC

This content downloaded from 
�����������129.240.118.58 on Sat, 18 May 2024 19:25:10 +00:00����������� 

All use subject to https://about.jstor.org/terms



© 1984 SCIENTIFIC AMERICAN, INC

This content downloaded from 
�����������129.240.118.58 on Sat, 18 May 2024 19:25:10 +00:00����������� 

All use subject to https://about.jstor.org/terms



UNIX�SYSTEM V. FROM AT&T. FROM 
What's the first question you 
should ask about a new busi
ness computer? Considering 
what's at stake, none is more 
important than "Is it based on 
UNIX System V?" The answer 
can affect your cost of doing 
business for a long time. 

Here's why good business 
decisions are based on 
UNIX System V. 

No more making the software fit the 
computer. Or junking the computer 
because its operating system isn't com
patible with other machines. 

Because UNIX System V from AT&T 
has emerged as an industry standard 
for business, engineering, and scientific 
computers. 

That means your programmers won't 
spend precious time and money repro
gramming software every time a new 
computer comes along. 

Instead, they can work more produc
tively. And more profitably. 

That's important because as program
mer productivity goes up, your costs 
come down. 

The profits of portability 
UNIX System V from AT&T frees you 

from the tyranny of computer obsolescence. 
Because it's hardware independent. 

Considering how much you invest 
in a computer these days, that can mean 
real savings. 

Another saving: applications software 
written for UNIX System V is easily 
adapted to a wide range of computers. 
From micros to mainframes. 

We call that portability. You'll call it a 
most important consideration when it's 
time to invest in a new computer. 

Service that goes on and on 
AT&T is committed to seeing that 

UNIX System V does the best possible 
job for your company. 

That's why we offer a complete 
program of training, support, and docu
mentation. 
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Including periodic updates. A news
letter. A problem-reporting system. 
A hotline. And more . 

The source of this service is AT&T, 
whose own Ben Laboratories first devel
oped the UNIX Operating System over 

why UNIX System V from AT&T has 
emerged as an industry standard. 

For you , the most important reason is 
its ability to cut the cost of doing business. 

It's the'
reason you should ask, "Is it 

based on UNIX System V?" before you 
ask anything else. 

10 find out how UNIX System V from 
x.r&T can help your 
busineSs, just fill 
out the coupon. 

\\e'n send you 
our specially prepared booklet, "'len 
�tions\bu 
Sbould Ask \bur 
MIS Manager About 
UN1XSystem V." 

UNIX System V. From AT&T. 
From now on, consider it standard. 
©1984 AT&T1l!chnologies.lnc, r -------
I Mail to: AT&T, P.O. Box967, SA0400AB 

Madison Square Station, New York, NY 10159 I Nml� ______________ � 

I TItle 
��mm __ ----________________ � 

I 
CoJDl)lq': 
MWeM� ______________________ __ 

I City __ --,...�------'StatJt;.e -"----"'ZIp�: -----

���--�---��----------

I UNIX System Licensee 0 'A!s 0 No OQon't know 
--- --- - -
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24 D 

This is the time of your life 
to own the camera of your life. 

We've made the Leica R4 S 250 more affordable. And your 
U.S. Warranty enrolls you in our "Passport Protection Plan': 
If you've always dreamed of owning a Leica, this is the perfect time 
to visit your authorized Leica dealer. Because now through June 
30th, your purchase of a new U.s. warranteed Leica will bring you 
a special cash refund directly from E. Leitz, Inc.. when you mail in 
your U.S. warranty card to list your name with our Leica® camera 
owner's registry 

Select a Leica R4 body and receive a $ 250 cash refund. Purchase 
a Leica R4S body and receive a $ 75 cash refund. Select a Leica M4-P 
and receive a $ 200 cash refund. And there are cash refunds of up 
to $250 on selected Leica SLR lenses and other accessories. Ask 
your participating Leica dealer for a special Leica refund certificate 
and the details on this extraordinary opportunity 

In addition, when you register your new Leica camera or lens, 
you'll be enrolled in Leica's unique "Passport Protection Plan". It 
entitles you to priority service and completely protects you for two 
full years against any and all damage to your camera or lens ... no 
matter how extensive, or how it occurred. Under this extraordinary 
program, your camera or lens will be repaired or replaced free of 
charge. And that's just one of the many benefits your" Passport 
Protection Plan" brings you. 

Now is the time of your life to own the camera of your life. The 
one camera selected over all others by those who demand the 
absolute best. The legendary Leica. 

For more information and the location of the participating Leica 
dealer in your area, call ... (800) 223-0514. 

S 
E. Leitz, Inc.. 24 Link Drive, Rockleigh, NJ 07647 
Ay !" Leitz means precision. Worldwide. 

® 

Leitz and Leica are registered trademarks of E. Leitz. Inc 
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sion in designing such a program is the 
choice of how a number is to be repre
sented in the computer's memory. The 
processor can operate only on binary 
values, but one would obviously prefer 
to have the result of the calculation dis
played in decimal form. A useful com
promise is the scheme called binary
coded decimal, in which each decimal 
digit is separately represented by its 
equivalent binary value. The 6502 orga
nizes the memory of a computer in 
"bytes," or units of eight bits, and so it is 
convenient to store a number one deci
mal digit to a byte. (This is not the most 
efficient method, but it is the simplest.) 

The first step in the algorithm is to 
clear an area in memory 39,760 bytes 
long by setting each byte eq ual to zero. 
Next a starting value of 1 is put into 
the cleared work space, so that the area 
holds 39,759 zeros followed by a single 
1. A counter that will be needed to keep 
track of the progress of the calculation 
is given an initial value of zero. 

The main section of the program is a 
loop that repeatedly calls a subroutine 
whose function is to double the number 
stored in the work space. After each 
doubling the counter is incremented by 
1 and the value in the counter is com
pared with 132,049. If that limit has 
not yet been reached, the doubling sub
routine is called again; when the limit 
is reached, the program exits from the 
loop. Finally, 1 is subtracted from the 
value in the work space and the result is 
displayed. 

In the flow chart at the left the dou
bling subroutine is marked with color; 
the instructions making up the subrou
tine are shown in the flow chart at the 
right. Each time the routine is called, an 
index (X) is set to the lowest address in 
the work space, where the rightmost, or 
least significant, digit of the number is 
stored. The value stored at that address 
is then doubled by adding it to itself. As 
in doing addition by hand, most of the 
complication arises from the need to 
deal with a "carry" from one digit to the 
next as the addition proceeds. If an earli
er addition has generated a carry digit, it 
must be added to the new result. That 
result in turn must be checked for a car
ry digit: if the sum is greater than 9, it 
must be adjusted by subtracting 10, and 
the carry digit must be set equal to 1. 
The process is repeated for all 39,760 
bytes of the work space. 

The 6502 processor of the Apple II 
computer operates at a speed of more 
than 250,000 instructions per second. 
Nevertheless, the scheme shown in the 
flow charts would require 120 hours to 
compute the 132,049th power of 2. Sim
ple short cuts could greatly 

·
reduce the 

running time. For example, it is not nec
essary to double all the digits of the 
work space during the early stages of the 
calculation, when all but a few of them 
are zeros. The work space might begin 

with a length of, say, 150 bytes and be 
augmented by three bytes for every 10 
powers. This strategy would in itself re
quire the execution of some additional 
instructions, but the overall effect would 
be an increase in speed. 

All the numbers in the calculation of 
.fl.. 2132049 - 1 are integers, but many 
problems are best approached by ex
pressing quantities in scientific notation, 
where a number consists of a decimal 
fraction called the mantissa and an 
exponent that gives the magnitude, or 
power of 10. For example, in the num
ber representing the current year the 
mantissa is 1.984 and the exponent is 
+ 3, and the complete number is written 
as 1.984 X 103. A high-precision pro
gram for manipulating such numbers is 
necessarily more complicated than one 
that deals only with integers because 
each number has several parts (includ
ing not only the mantissa and the expo
nent but also their signs). 

Most higher-level programming lan
guages incorporate some facilities for 
calculating in scientific notation; the sys
tem is often called floating-point arith
metic. Numbers smaller than a certain 
size are displayed as an ordinary deci
mal fraction, but the values are stored 
internally as a mantissa and an expo
nent. The space allocated to the vari
ous elements of the number determines 
the precision and the range of values 
that can be represented. Giving more 
room to the mantissa improves the pre
cision; a larger exponent affords a great
er range. The version of BASIC incor
porated into the Apple II has a fixed 
precision level of about nine digits. 

For appreciably greater accuracy it is 
again necessary to resort to a software 
solution. Herman P. Robinson, former
ly of Lawrence Livermore, has written 
a package of high-precision scientific
notation programs in the machine lan
guage of the 6502 microprocessor. The 
programs can operate at any level of 
precision up to 600 decimal digits and 
allow exponents up to 9,999. These lim
its were chosen because they match cer
tain characteristics of the processor. A 
600-digit mantissa, a four-digit expo
nent and their signs can all be fitted into 
256 bytes; in the 6502 a block of 256 
bytes is one "page" of memory. 

In Robinson'S programs the opera
tions that can be carried out on numbers 
include the elementary arithmetic ones 
as well as the logarithmic, exponential, 
square-root and various trigonometric 
functions. Some less common functions 
are also provided, such as the Euler and 
van Wijngaarden transforms for sum
ming slowly convergent series. Record
ed in the package are the values of some 
26 constants and 8,000 prime num
bers. It can be used as a highly accurate 
desk calculator, or the functions can be 
called from within a program. Prelimi-
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nary versions indicate that the arithmet
ic operations and the functions are ac
curate up to the limit of 600 digits. 

For those interested in numerical cal
culations a first acquaintance with the 
digital computer is sometimes disheart
ening: because the machine's elemen-

START 

CLEAR WORK SPACE 
IN MEMORY (39,760 BYTES) 

STORE 1 IN WORK SPACE 

SET COUNTER TO 0 

D OUBLE NUMBER 
IN WORK SPACE 

ADD 1 TO COUNTER 

II 

NO COUNTER 
132.049? 

YES 

SUBTRACT 1 
FROM THE NUMBER 

IN WORK SPACE 

DISPL AY THE NUMBER 
IN WORK SPACE 

STOP 

tary calculations are fast and essen
tially flawless, the naive expectation is 
that elaborate numerical analyses can 
be done with great ease. One is then 
disappointed to learn that the fifth root 
of 100 (the quantity astronomers desig
nate an order of magnitude) cannot be 

determined with much greater accuracy 
than a hand-held calculator provides, 
A package of programs such as Robin
son's redeems some of the computer's 
promise. The fifth root of 100 can be 
calculated to 100 decimal places in a 
matter of minutes. 

ENTER 

SET X EQUAL TO LOWEST 
ADDRESS IN WORK SPACE 

(RIGHTMOST DIGIT) 

SET CARRY DIGIT TO 0 

ADD CONTENTS OF 
ADDRESS XTO ITSELF; 

ADD CARRY DIGIT TO SUM; 
STORE RESULT AT 

ADDRESS X 

RESULT YES 

10? 

NO 

SET X EQUAL TO SUBTRACT 10 FROM 
NEXT-HIGHER ADDRESS CONTENTS OF ADDRESS X 

I 

It 

SET CARRY DIGIT TO 0 SET CARRY DIGIT TO 1 

NO 
IS X THE 

HIGHEST ADDRESS 
IN WORK 

SPACE? 

YES 

RETURN 

Flow charts for the calculation of the 39, 7SI-digit prime number 2132049 - I 
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