
An Introduction to the C99 Programming Langua ge

In one breath, C is often described as a good general purpose language, an excellent systems programming
language and nothing more than a glorified assembly language. So how can it be all three?

C can be correctly described as a successful, general purpose programming language, a description also
given to Java and C++. C is aproceduralprogramming language, not an object-oriented language like Java
or C++. Programs written in C can of course be described as ‘‘good’’ programs if they are written clearly,
make use of high level programming practices, and are well documented with sufficient comments and
meaningful variable names.Of course all of these properties are independent of C and are provided
through many high level languages. Chas the high level programming features provided by most
procedural programming languages − strongly typed variables, constants, standard (orbase) datatypes,
enumerated types, a mechanism for defining your own types, aggregate structures, control structures,
recursion and program modularization.C does not support sets of data, Java’s concept of a class or objects,
nested functions, nor subrange types and their use as array subscripts, and has only recently added a a
Boolean datatype.C does have, howev er, separate compilation, conditional compilation, bitwise operators,
pointer arithmetic and language independent input and output. The decision about whether C, C++, or Java
is the best general purpose programming language (if that can or needs be decided), is not going to be an
easy one.

C is frequently, and correctly, described as an excellent systems programming language. It is claimed, too,
that C provides an excellent operating system’s interface through well defined library routines.Correctly,
these statements should be considered in perspective. The C language began its development in the early
1970s, as a programming language in which to write significant portions on the UNIX operating system.
Today, well in excess of 99% of the UNIX , LINUX , Mac-OSX, and Windows-XP operating system kernels
and their standard library routines, are all written in the C programming language.Today it is extremely
difficult to find an operating systemnotwritten in either C or its descendant C++.

C is the programming language of choice for most systems-level, engineering, and scientific programming.
The world’s popular operating systems - Linux, Windows and Mac OS-X, their interfaces and file-systems,
are written in C; the infrastructure of the Internet, including most of its networking protocols, web servers,
and email systems, are written in C; software libraries providing graphical interfaces and tools, and efficient
numerical, statistical, encryption, and compression algorithms, are written in C; and the software for most
embedded devices, including those in cars, aircraft, robots, smart appliances, sensors, mobile phones, and
game consoles, is written in C.

C has very efficient compilers, libraries and runtime environment support.C compilers have been both
developed and ported to a large number and type of computer architectures, from 8-bit microcomputers,
through the traditional 16, 32, and 64 bit virtual memory architectures used in most PCs and workstations,
to larger 64 and 128 bit supercomputers. Compilers have been developed for traditionally large instruction
set architectures, the newer reduced instruction set architectures (RISC), more recently personal data
assistants (PDAs), and parallel and pipelined architectures.C’s portability has greatly added to its (and
UNIX ’s) success. Oncea C compiler has been developed for a new architecture (and an architecture and
operating system without a C compiler is, today, extremely rare) the gigabytes of C programs and libraries
available on other C-based platforms can also be ported to the new architecture.

CS23 Spring’07 − An introduction to the C99 programming language page 1

The C Programming Langua ge, continued

It is often quoted that a C program, when compiled, will run only 1-2% slower than the same program
hand-coded in the native assembly language for the machine. But the obvious advantage of having the
program coded in a readable, high level language, provides the overwhelming advantages of maintainability
and portability. Very little of an operating system, such as UNIX or LINUX , is written in an assembly
language − in most cases the rest is written in C.Even the operating system’s device drivers, often
considered the most time-critical code in an operating system kernel, today contain assembly language
numbered in only the hundreds of lines.

C is also described as nothing more than a glorified assembly language, meaning that C programs can be
written in such an unreadable fashion that they look like your terminal is set at the wrong speed (in fact
there’s a humorous contest held each year namedThe International Obfuscated C Code Contest,
http://www.au.ioccc.org/, for such code).

Perhaps C’s biggest problem is that the language was designed by programmers who, folklore says, were
not very proficient typists.C makes extensive use of punctuation characters in the syntax of its operators
and control flow. In fact, only the punctuation characters@, ‘ and$ arenot used in C’s syntax! It is not
surprising, then, that if C programs are not formatted both consistently and with sufficient white space
between operators, and if very short identifier names are used, a C program will be very difficult to read!
To partially overcome these problems, a number of editors and programs such asindentreformat C code for
us.

C is also criticized for being too forgiving in its type-checking at compile time. It is possible tocastan
instance of one type into another, even if the two objects have considerably different types. In particular, a
pointer to an instance of one type can be coerced into a pointer to an instance of another type, thereby
permitting the object’s contents to be interpreted differently.

C also has no runtime checking of constructs like pointer variables and array indices. Subject to constraints
imposed by the operating system’s memory management routines (if any − c.f. thegeneral protection fault
andblue screen of death!), a pointer may point almost anywhere in a process’ address space and seemingly
random addresses accessed or written to. Although all array indices in C begin at0 it is possible to access
an array’s ‘‘elements’’ w ith negative indices or indices beyond the declared end of the array.

Despite all of its weaknesses, and we’ve had no shame admitting them here, the C programming language
is an extremely powerful and popular language, and there are probably still more people using C and C++
than any other languages today.

CS23 Spring’07 − An introduction to the C99 programming language page 2

The Standardization of the C Langua ge

Despite C’s long history, being first designed in the early 1970s, it underwent considerably little change
until the late 1980s. This is a very lengthy period of time when talking about a programming language’s
ev olution (c.f. in common discussions, Java is considered only 10 years old).The original C language was
mostly designed by Dennis Ritchie and then described by Brian Kernighan and Dennis Ritchie in their
imaginatively titled book The C Programming Language. The language described in this seminal book,
described as theK&R book, is now described asK&R C or ‘‘old’ ’ C. In the late 1980s a number of
standards forming bodies, and in particular the American National Standards Association X3J11
Committee, commenced work on rigorously defining both the C language and the commonly provided
standard C library routines. The results of their lengthy meetings are termed the ANSI-X3J11 standard, or
informally asANSI-C.

The formal definition of ANSI-C introduces surprisingly few modifications to the oldK&R C language and
only a few additions. Mostof the additions were the result of similarenhancementsthat were typically
provided by different vendors of C compilers, and these had generally been considered as essential
extensions to old C. The ANSI-C language is extremely similar to old C, the committee only introduced a
new base datatype, modified the syntax of function prototypes, added functionality to the preprocessor and
formalized the addition of constructs such as constants and enumerated types.

A new revision of the C language, named ISO/IEC 9899 by the ISO-JTC1/SC22/WG14 working group, of
just C99 was recently completed.Again many features have been ‘‘cleaned up’’ i ncluding the addition of
Boolean and complex datatypes, single line comments, and variable length arrays, as well as removing
some unsafe features. Seehttp://wwwold.dkuug.dk/JTC1/SC22/WG14/docs/c9x/ .

Today ANSI-C is now far more widely available and accepted than was old C, and the C99 standard is
rapidly gaining wider use.

C is again being required for many government tenders and being used in all universities and significant
information technology-based companies.

CS23 Spring’07 − An introduction to the C99 programming language page 3

The GNU C Compiler, gcc

On our Department’s LINUX PCs you will be using an C compiler developed by the GNU (pronouncednoo)
group of programmers. The GNU group, standing forGnu’s Not UNIX, (or correctly the Free Software
Foundation) produces excellent public domain software modeled on some traditional UNIX commands and
libraries.

The GNU C compiler, gcc, is perhaps their best ‘‘product’’, being a C compiler supporting both the ANSI-
C and ISO-C99 definitions and distributed in (C!) source form for hundreds of different architecture and
operating system combinations.gcc generates both small and efficient code for its range of target
architectures and, in the case ofgcc running under some commercial operating systems, produces better
code, (for a number of significant examples) than the proprietary C compiler distributed with the operating
system itself.

Using the gcc Compiler Under L INUX

The GNU C compiler, gcccan be invoked from the shell’s command line like any other LINUX command.
Assuming that you’ve entered an C99 program into a file namedfirstprog.c (using, say, vi or emacs),
a typical compilation of the program would be:

prompt-1. gcc -std=c99 -o firstprog firstprog.c

This will result in the syntactically correct C99 program being compiled and linked into the executable
binary file firstprog . As firstprog is executable and we typically have the present working
directory in our shell’s search path, we can execute this program with

prompt-2. firstprog
... output of firstprog

The -std=c99 switch togcc specifies that we want the syntax of the C99 language (rather than ‘‘old’’
K&R or ANSI-C) to be expected. The-o switch togcc specifies that we want the resulting binaryoutput
file to be placed in the (following) indicated file. Note that the C source filefirstprog.c musthave the
filename extension of.c . In this case it isgcc that is imposing this restriction and not the LINUX

operating system nor file system. Attempts to invoke gcc with incorrect switches or syntactically incorrect
programs will result in a flurry of error messages.

gcc supports a huge number of switches, more thanls (!), though only a few will be used in practice.
Depending on the switches and filenames presented togcc , the compilation process consists of 2 or 3
independent passes, each run as a separate LINUX processes: the C-preprocessor, compilation and code
generation, and optional optimization.gcc has the expected LINUX manual entry, though the manual entry
only describes the extensive list of switches togcc and its operation, and not the syntax nor semantics of
the C99 language itself.

To minimize the risk of programming errors, we’ll have gcc report as many illegal and ‘‘bad practice’’
errors as possible. For this reason we’ll compile all programs as:

prompt-1. gcc -std=c99 -Wall -pedantic -o firstprog firstprog.c

CS23 Spring’07 − An introduction to the C99 programming language page 4

The Structure of a C program

In the following sections we’ll consider the aspects of the C language (and C99 in particular) that make it
different than Java. We’ll not spend time on describing what a variable is, nor how control structures can be
used in C programs as these are concepts common to most high level languages are not peculiar to C.

C, like Java, is described as afree-format language, that is statements in C, such as declarations and
expressions may be entered without regard to the column position of each line. This concept is easy to
grasp after some programming in Java, though different if you’re used to programming in many assembly
languages or earlier version of Fortran. Inparticular, white space characters (spaces, tabs and newlines)
shouldbe used without shame in a C program, particularly if their addition will add to the readability of the
program.

Comments in C

Comments in C are used to ‘‘hide’’ some text from the C compiler itself and, of course, used to document
sections of programs with natural language descriptions or pseudo-language outlines of an algorithm.
Unlike Java, there is only one method of opening and closing comments in C. Comments begin with the
two character sequence/* and are closed with the sequence*/ .

/* This is a pretty boring comment in C */

There can be no white space characters between the two characters in each case.Any sequence of ASCII
characters may appear within the body of a comment and comments are usually used to temporarily ‘‘hide’’
some C code from the C compiler. Unlike some languages, however, comments in C cannot be nested (that
is, comments may not appear in comments), and care must be taken if ‘‘hiding’’ C code within a comment,
that this C code does not have comments itself!

Comments may appear between any two symbols of a C program, for example

result = a /* this is perfectly legal here */ + b;

And like Java and C++, there is also a simple// comment to end of line.

Be aware that some older C texts will tell you that comments may be placedwithin an identifier!

ident /* no longer legal */ifier

While acceptable in old K&R C, this is no longer valid under C99.

CS23 Spring’07 − An introduction to the C99 programming language page 5

Operator s in C

Nearly all operators in C are identical to those of Java. Howev er the role of C in system programming
exposes us to much more use of the shift and bit-wise operators than in Java.

• Assignment
= (not := as in Pascal)

• Arithmetic
+, −, *, /, %, unary− (there is no unary +)
Only one / (not / anddiv as in Pascal)
Priorities may be overridden with ()’s.

• Relational
>, >=, <, <= (allhave same precedence)
== (equality) and != (inequality)

• Logical
&& (and), || (or), ! (not)

• Pre- and post- decrement and increment
Any (integer, character or pointer) variable may be either incremented or decremented before or after
its value is used in an expression.

For example :
--fred will decrementfred before value used.
++fred will incrementfred before value used.
fred-- will get (old) value and then decrement.
fred++ will get (old) value and then increment.

• Bitwise operators and masking
& (bitwise and),| (bitwise or), ˜ (bitwise negation).
To check if certain bits are on (fred & MASK) etc.
Shift operators<< (shift left), >> (shift right).

• Combined operators and assignment
a += 2; a -= 2;
a *= 2 (should bea = a<<2;)
May be combined as ina += b; a = a+b;

• Type coercion
C permits assignments and parameter passing between variables of different types usingtype castsor
coercion. Casts in C are not implicit, and are used where some languages require a ‘‘transfer
function’’.

CS23 Spring’07 − An introduction to the C99 programming language page 6

Precedence of operator s in C

• Expressions are all evaluated from left-to-right, and the default precedence may be overridden with
brackets.

() coercion (highest)
++ -- ! ˜
* / %
+ -
<< >>
!= ==
&
|
&&
||
? :
=
, (lowest)

Variable names in C

Variable names (and type and function names as we shall see later) must commence with an alphabetic or
the underscore characterA-Za-z_ and be followed by zero or more alphabetic, underscore or digit
charactersA-Za-z_0-9 .

Most C compilers, such asgcc , accept and support variable, type and function names to be up to 256
characters in length.

Some older C compilers only supported variable names with up to 8 unique leading characters and keeping
to this limit may be preferred to maintain portable code.

It is also preferred that you do not use variable names consisting entirely of uppercase characters −
uppercase variable names are best reserved for#define -ed constants, as inMAXSIZE above.
Importantly, C variable names arecase sensitiveand

MYLIMIT, mylimit, Mylimit and MyLimit

are four different variable names.

CS23 Spring’07 − An introduction to the C99 programming language page 7

Base Datatypes in C

Variables are declared to be of a certaintype, this type may be either abasetype supported by the C
language itself, or auser-defined typeconsisting of elements drawn from C’s set of base types.C’s base
types and their representation on our labs’ Pentium PCs are:

bool an enumerated type, eithertrueor false
char the character type, 8 bits long
short the short integer type, 16 bits long
int the standard integer type, 32 bits long
long the ‘‘longer’’ i nteger type, also 32 bits long
float the standard floating point (real) type, 32 bits long

(about 10 decimal digits of precision)
double the extra precision floating point type, 64 bits long

(about 17 decimal digits of precision)
enum the enumerated type, monotonically increasing from 0

Very shortly, we will see the emergence of Intel’s IA64 architecture where, like the Power-PC already,
long integers occupy 64 bits.

We can determine the number ofbytesrequired for datatypes with thesizeofoperator. In contrast, Java
defines how long each datatype may be. C’s only guarantee is that:

sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)

Stora ge Modifier s of Variables

Base types may be preceded with one of morestorage modifier :

auto the variable is placed on the stack (default, deprecated)
extern the variable is defined outside of the current file
register request that the variable be placed in a register (ignored)
static the variable is placed in global storage with limited visibility
typedef introduce auser-defined type
unsigned storage and arithmetic is only of/on positive integers

Initialization Of Variables

All scalarauto andstaticvariables may be initialized immediately after their definition, typically with
constants or simple expressions that the compiler can evaluate at compile time.

The C99 language defines that alluninitialized global variables, and alluninitialized static local
variables will have the ‘‘starting’’ values resulting from their memory locations being filled with zeroes -
conveniently the value of 0 for an integer, and 0.0 for a floating point number.

CS23 Spring’07 − An introduction to the C99 programming language page 8

Scope Rules Of Global Variables

In Java, a ‘‘variable’’ is simply used as anameby which we refer to an object.A newly created object is
given a name for later reference, and that name may be re-used to refer to another object ‘‘later’’ in the
program. InC, a variable more strictly refers to a memory address (or contiguous memory address starting
from the indicated point) and thetype of the variable declares how that memory’s contents should be
interpreted and modified.

C only has two true lexical levels, global andfunction, though sub-blocks of variables and statements may
be introduced in sub-blocks in many places, seemingly creating new lexical levels. As such, variables are
typically defined globally (at lexical level 0), or at thestart of a statement block, where a function’s body is
understood to be a statement block.

Variables defined globally in a file, are visible until the end of that file.They need not be declared at the
top of a file, but typically are. If a global variable has a storage modifier ofstatic, it means that the
variable is only available from within that file. If the staticmodifier is missing, that variable may be
accessed from another file if part of a program compiled and linked from multiple source files.

The extern modifier is used (within ‘‘our’’ fi le) to declare the existence of the indicated variable in
another file. The variable may bedeclaredas extern in all files, but must bedefined(and not as a
static!) in only a single file.

Scope Rules Of Local Variables

Variables may also be declared at the beginning of a statement block, but may not be declared anywhere
other than the top of the block. Such variables are visible until the end of that block, typically until the end
of the current function.A variable’s name mayshadowthat of a global variable, making that global
variable inaccessible. Blocks do not have names, and so shadowed variables cannot be named.Local
variables are accessible until the end of the block in which they are defined.

Local variables are implicitly preceded by theauto modifier − as control flow enters the block, memory
for the variable is allocated on the run-time stack. The memory is automatically ‘‘deallocated’’ (or simply
becomes inaccessible) as control flow leaves the block. The implicitautomodifier facilitates recursion in
C − each entry to a new block allocates memory for new local variables, and these unique instances are
accessible only while in that block.

If a local variable is preceded by thestaticmodifier, its memory is not allocated on the run-time stack,
but in the same memory as for global variables. Whencontrol flow leaves the block, the memory is not
deallocated, and remains for the exclusive use by that local variable. Theresult is that astatic local
variable retains its value between entries to its block. Whereas the ‘‘starting’’ value of anauto local
variable (sitting on the stack) cannot be assumed (or more correctly, should be considered to contain a
totally random value), the ‘‘starting’’ value of astatic local variable is as it was when the variable was
last used.

CS23 Spring’07 − An introduction to the C99 programming language page 9

Flow of c ontrol in a C program

Control flow within C programs is almost identical to the equivalent constructs in Java. Howev er, C
provides no exception mechanism, and so C has notry, catch, andfinallyconstructs.

• Conditional execution
if (e xpression)

statement1;

if (e xpression) {
statement1;
statement2;

......
}

if (e xpression)
statement

else
statement

Of significance, and a very common cause of errors in C programs, is that pre C99 has no Boolean
datatype. Instead,any expression that evaluates to the integer value of 0 is considered false, and any non-
zero value as true.A conditional statement’s controlling expression is evaluated and if non-zero (i.e. true)
the following statement is executed. Mosterrors are introduced when programmers (accidently) use
embedded assignment statements in conditional expressions:

if (loop_index = MAXINDEX)
statement;

/* instead of ... */

if (loop_index == MAXINDEX)
statement;

A good habit to get into is to place constants on the left of (potential) assignments:

if (0 = value)
statement;

When compiling withgcc -std=c99 -Wall -pedantic ... the only way to ‘‘shut the compiler
up’’ is to use extra parenthesis:

if ((l oop_index = MAXINDEX))
statement;

CS23 Spring’07 − An introduction to the C99 programming language page 10

Flow of c ontrol in a C program, continued

C’s other control flow statements are very unsurprising:

while (c onditional-expression) {
statement1;
statement2;

......
}

do {
statement1;
statement2;

......
} while (c onditional-expression);

for(i nitialization ; conditional-expression ; statement3) {
statement1;
statement2;

......
}

Any of the 4 components may be missing, If the conditional-expression is missing, it is always true,
Infinite loops may be requested in C withfor(; ;) ... orwith while(1) ...

The equivalence of for and while

for (e xpression1 ; expression2 ; expression3) {
statement1;

}

expression1;
while (e xpression2) {

statement1;
expression3;

}

The switchstatement

switch (e xpression) {
case const1 : statement1; break;
case const2 : statement2; break;
case const3 :
case const4 : statement4;
default : s tatementN; break;

}
One of the few differences here between C and Java is that C permits control to ‘‘drop down’’ to following
case constructs, unless there is an explicitbreakstatement.

CS23 Spring’07 − An introduction to the C99 programming language page 11

The break statement

for (e xpression1 ; expression2 ; expression3) {
statement1 ;
if(. ..)

break;
statementN ;

}

while (e xpression1) {
statement1 ;
if(. ..)

break;
statementN ;

}

switch (e xpression1) {
case const1 : statement1;

case const2 : statement2;
break;

default : s tatementN;
}

The continuestatement

for (e xpression1 ; expression2 ; expression3) {
statement1 ;
if(. ..)

continue;
statementN ;

}

while (e xpression1) {
statement1 ;
if(. ..)

continue;
statementN ;

}

CS23 Spring’07 − An introduction to the C99 programming language page 12

The C Preprocessor

You will notice that a few lines, typically near the beginning, of a C program begin with the hash or pound
sign, #. These lines are termedC preprocessor directivesand are actually instructions (directives) to a
special program called the C preprocessor (located in/lib/cpp). As its name suggests, the C
preprocessor processes the text of a C programbeforethe C compiler sees it. The preprocessor directives
(all beginning with#) should begin in column 1 (the 1st column) of any source line on which they appear.
The C preprocessor is easily able to locate these lines and then examine the characters following the#. The
following characters usually form a special word in the C preprocessor’s syntax which typically cause the
preprocessor to modify the C program before it is sent to the C compiler itself.Although there are about 20
different preprocessor directives, well only discuss the most common one here and then a few others as we
need them.

Header File Inclusion

The#include directive, pronouncedhash include, typically appears at the beginning of a C program.It
is used totextually include the entire contents of another file at the point of the#include directive. A
common#include directive, seen at the beginning of most C files is

#include <stdio.h>

This directive indicates that the contents of the file namedstdio.h should be included at this point (the
directive is replaced with the contents). There is no limit to the number of lines that may be included with
this directive and, in fact, the contents of the included file may have further#include directives which
are handled in the same way. We say that the inclusions arenestedand, of course, care should be taken to
avoid recursive nestings!

The example using<stdio.h> , above, demonstrates two important points. The filename itself appears
between the characters< . .. > . The use of these characters indicates that the enclosed filename should
be found in the standard include directory, /usr/include . The required file is then
/usr/include/stdio.h .

Thestandard includefiles are used to consistently provide system-wide data structures or declarations that
are required in many different files. By having the standard include files centrally located and globally
available, all C programmers are guaranteed of using the same data structures and declarations that they
(all) require. C99 only defines 15 operating system independent header files.

Have a (recursive) look in the/usr/include directory yourself and you see that there are over 2000
standard include files available under LINUX !

CS23 Spring’07 − An introduction to the C99 programming language page 13

The C Preprocessor, continued

Importantly, it is the use of the< . .. > characters which signify that the/usr/include directory
name should be prepended to the filename to locate the required file.Alternatively, the " . .. "
characters may also be used, as in the following example:

#include "mystructures.h"

to include the contents of the filemystructures.h at the correct point in the C program. Because the
" . .. " characters are used, the file is sought in thepresent working directory, that is
./mystructures.h . By using the" . .. " characters we can specify our own include files which are
located in the same directory as the C source programs themselves.

In both of the above examples the indicated filename had the ‘‘extension’’ of .h . Whereas we have
previously said that the ‘‘extension’’ of .c is expected by the C compiler, the use of.h is only a
convention within UNIX . The .h indicates that the file is aheader file, because they generally contain
information required at thehead(beginning) of a C program.Header files typically (and should) contain
only declarations of C constructs, like data structures and constants used throughout the C program.In
particular, theyshould notcontain any executable code, variable definitions, nor C statements.

Defining T extual Constants

Another frequently used C preprocessor directive is the#define directive, pronouncedhash define. The
#define directive is used to introduce a textual value, or textual constant, which when recognized by the
C preprocessor will be textually substituted by its definition.Traditionally #define directives were the
only method available to C programmers, using old K&R C, of introducing constants in C programs.For
example, two frequently used#define -ed constants are:

#define FRESHMAN 1
#define SOPHOMORE 2
#define JUNIOR 3
#define SENIOR 4

After these definitions, each time the C preprocessor locates the sequenceJUNIOR as a complete word
within the C program, it will be substituted for thecharacter sequence3. Although the new ANSI-C
standard has introduced a formalconst construct for supporting constants, the#define directive is still
the preferred method of defining some forms of constants.For example, when defining an array of integers
(described in greater detail later) we use a#define directive to define the maximum size of the array.
Thereafter we use the#define -ed constant in the array definition:

#define MAXSIZE 100

int myarray[MAXSIZE];

If necessary, a preprocessor token may be undefined is no longer required:

#undef MAXSIZE

CS23 Spring’07 − An introduction to the C99 programming language page 14

Te xtual, Inline Functions

The #define directive may also be used to define some inline functions, more correctly termedmacros,
within your C programs. An often cited example is:

#define sqr(x) x * x

C does not have a standard function for calculating the square of, say, an integer value, but using the inline
macro defined above, we can now write:

result = sqr(i);

where i is an integer variable. Noticethat the macro substitution was performed with the macro’s
argument beingi . In a manner akin to actual and formal parameter naming in Java (and C), the actual
parameteri is represented in the macro as the formal parameterx without problems. Each timex appears
as a unique ‘‘word’’ in the right-hand-side of the definition, it will be replaced in the C code byi .

Notice that this textual substitution may also be used for calculating (in this example) the square of an
integer constant.For example:

result = sqr(3);

is expanded in an identical way. Our definition ofsqr is not really rigourous enough to provide correct
results in all cases.For example, consider the ‘‘call’ ’ to sqr(x+1) which would evaluate to2x+1 ! A
more correct definition would be:

#define sqr(x) ((x) * (x))

Conditional Compilation

Another often used feature of the C preprocessor is the use of conditional compilation directives. The C
compile pre-defines a few constants to ‘‘tell’ ’ the program the operating system in use, filename being
compiled, and so on:

#if defined(linux)
/* compile code specific to L INUX */

......
#elif defined(WIN32)

/* compile code specific to Windows */
......

#elif defined(sun) && defined(SVR4)
/* compile code specific to Sun’s Solaris */

......
#endif

CS23 Spring’07 − An introduction to the C99 programming language page 15

Functions in C

Java supportsconstructorsandmethodswhich allocate instances of, and interrogate and modify the state of,
their own (implicit) objects. Constructors and methods are typically directed by their parameters.C is a
procedural programming language, meaning that its primary synchronous control flow mechanism is the
function call. Strictly speaking, C has no procedures, but instead has functions, all of which return a single
instance of a base or user-defined type.C’s functions access and modify the global memory, and (possibly)
their parameters. Although we may hope that a function can only modify memory that it can ‘‘see’’
(through C’s scoping rules) or has been provided (through its parameter list), this is untrue.

By stating that there are only functions, in we suggest that all functions must return a value. Whilenearly
true, C also has avoid type, difficult to describe, and often used as a place holder (to keep the compiler
happy!). We may think of a procedure in C, as a function that returns avoid− nothing is returned.With a
similar thought, we will often invoke a function, but have no use for its return value. For example, a
function such asprintf() will return an integer as its result, but we rarely need to use this integer. We
can ‘‘cast its value’’ to void, effectively throwing away the value.

printf(....);

The default return datatype of a function isint − if a function’s datatype is omitted, the compiler assumes
it to be anint. This has the unpleasant result, that if an external or yet to be defined function’s prototype
is omitted, the compile will often silently assume anint return result. This is a frequent cause of
problems, particularly when dealing with functions returning floating point values, as in C’s mathematics
library. The use ofgcc’s-pedantic switch allows us to trap most such errors.

Every complete C program has an entry point namedmain, at which it appears the operating system calls
the program.Functionmain is of typeint − this int is returned as the ‘‘result’’ of execution of the
whole program, with 0 indicating a successful execution, anything non-zero otherwise.

C’s functions may receive zero or more parameters.All parameters to C’s functions are passed by value.
Other than within a single file, the datatype of function parameters between the function’s definition and
invocation is not checked, i.e. C provides no link-time cross file type checking.Perhaps surprisingly, C also
permits functions to receive a variable number of parameters. At run-time it is the function’s responsibility
to deal with the data types received, and the compiler cannot perform any type checking on these
parameters.

Function parameters are implicitlypromotedto ‘‘higher’’ datatypes by the compiler −chars are promoted
to ints, andfloats are promoted todoubles.

CS23 Spring’07 − An introduction to the C99 programming language page 16

Data structures in C

C has no equivalent construct to the Java class. Instead,C provides two aggregate data structures − arrays
and structures.

Arrays in C are not objects, nor strictly single variables. Instead,an array’s name is the name referring to
the first memory address of a contiguous block of memory of the requested length. Arrays may be declared
or defined wherever scalar variables are declared or defined − arrays may be either arrays of C’s base types
or user-defined types.

There is noarray keyword in C, and no bounds checking at run-time.C array subscripts commence at 0,
the highest valid subscript ofint a[N] thus being N-1.

• One dimensional arrays Defined with (for example)int score[20];

-> declare score as array of 20 int
int score[20]

total = 0;
for(i=0 ; i<20 ; i++)

total = total + score[i];

• Multi-dimesntional arrays?
Strictly speaking, C does not support multi-dimensional arrays.However, if all (one-dimensional)
arrays in c are considered asvectors, then multi-dimensional arrays are simply understood as ‘‘vectors
of vectors’’.

-> explain char str[10][20]
declare str as array of 10 array of 20 char

The number of elements of an array can be determined with :

#define NELEMENTS (sizeof(score) / sizeof(score[0]))

for(i=0 ; i<NELEMENTS ; i++)
total = total + score[i];

CS23 Spring’07 − An introduction to the C99 programming language page 17

User-defined C Structures

Structures in C are aggregate datatypes consisting offieldsor membersof base types, or other user-defined
types. Cstructures may not include executable code, unlink methods in Java classes.

struct person {
char name[20];
char addr[80];
int age;

};

struct person p1, p2;
int ages;

ages = p1.age + p2.age;
/* the sum of their ages */

if(strcmp(p1.name, p2.name) == 0) ...
/* do they have the same name? */

Character arrays and strings

C provides no base type that is a string, though the C compiler accepts the use of double quoted character
string literals and ‘‘does the obvious thing’’. A string in C is a sequence of characters (bytes) in contiguous
memory locations. The string is terminated by the sentinel value of theNULL character (zero byte).When
a C compiler detects a string literal in a program, it will allocate enough contiguous global (read-only)
memory to hold the characters of the string (including the NULL byte at the end).

C does not record thelengthof a string anywhere (as does Java). Instead,by convention, the length of a
string is defined as the number of characters from the beginning of the string (its starting address) up to, but
not including, the NULL byte. The length of"hello" is 5.

• Arrays of characters are typically used to store character strings. Notice that the parameter to the
following function does not indicate any expected (maximum) size, or ‘‘length’’, of the array.

int my_strlen(char str[])
{

int i = 0, l en = 0;

while(s tr[i] != ’\0’) {
len++;
i++;

}
return(len);

}

CS23 Spring’07 − An introduction to the C99 programming language page 18

The Standar d I/O Library

The C language itself does not define any particular file or character-based input or output routines (nor any
windowing routines) − unlike Java. Insteadany program may provide its own. Clearlythis is a daunting
task, and so the standard C library provides a collection of functions to perform file-based input and output.
The standard I/O library functions provide efficient,bufferedI/O to and from both terminals and files.

C programs requiring standard I/O should include the line:

#include <stdio.h>

All transactions through the standard I/O functions require afile pointer:

FILE *fp;

fp = fopen("file.dat", "r");
......

fclose(fp);

Although we are strictly dealing with a Cpointer, we simply pass this pointer to functions in the standard C
library. Some texts will refer to this pointer as afile stream(and C++ confused this even more), but these
should not be confused with nor be described as akin to Java’s streams.

An number of predicate macros are provided to check the status of file operations on a given file pointer:

feof(fp) /* checks for end-of-file */
ferror(fp) /* checks for an error on a file */

The standard I/O functions all returnNULLor −1 (as appropriate) when an error is detected.For example:

#include <stdio.h>

int main(int argc, char *argv[])
{

FILE *fp;

if((fp=fopen("/etc/passwd", "w")) == NULL) {
error message ...

}
else {

/* process the file */
...

fclose(fp);
}

}

CS23 Spring’07 − An introduction to the C99 programming language page 19

The Standar d I/O Librar y, continued

The most frequently used functions in the C standard I/O library perform output of formatted data.We also
see here the most frequent use of C’s acceptance of functions receiving a variable number of arguments:

fprintf(FILE *fp, char *format, (T)arg1, (T)arg2, ...);

e.g. int res;
char *name = "Chris";

fprintf(fp,"res=%d name=%20s\n", res, name);

Many standard I/O functions accept aformat specifier− a string indicating how following arguments are to
be displayed. This mechanism is in contrast to Java’s toString facility in which each object knows how
to output/display itself as aString object. Thereare many possible format specifiers, the most common
ones being ’c’ for character values, ’d’ for decimal values, ’f’ f or floating point values, and ’s’ for character
strings. Format specifiers may be preceded by a number of format modifiers, which may further specify
their data type, and to indicate the width of the required output (in characters).

As a special case, we may use a more concise version offprintf() in which theFILE pointer of the
operating system’s standard output device is used (typically, the screen). Thus, the following two
statements are identical:

fprintf(stdout, "res=%d name=%20s\n", res, name);
printf("res=%d name=%20s\n", res, name);

We mentioned before that the C standard I/O library provides efficient buffering. Thismeans that although
it appears that the output has ‘‘gone’’ to theFILE pointer, it may still be held within an internal character
buffer in the library (and will hence not yet be on disk, or to the screen).We often need toflushour output
to ensure that it is more quickly written to disk or the screen.FILE pointers are automatically flushed
when a file is closed or the process exits:

/* ... format some output ...*/
fflush(fp);

As well as outputting toFILE pointers, we may also perform formatted output to a character array (a
string), with a very similar series of functions:

int res;
char *name = "Chris";
char buffer[BUFSIZ];

sprintf(buffer, "res=%d name=%20s\n", res, name);

CS23 Spring’07 − An introduction to the C99 programming language page 20

The Standar d I/O Librar y, continued

C’s standard I/O library may also be used to input values fromFILE pointers and character arrays using
fscanf() andsscanf() . Because we want the contents of C’s variables to be modified by the standard
I/O functions, we need to pass theaddressof the variables:

fscanf(fp, format, &arg1, &arg2, ...);

e.g. int i, res;
char buffer[BUFSIZ];

fscanf(fp, "%d %d", &i, &res);
sscanf(buffer, "%d %d", &i, &res);

We also frequently need to read all lines from a file, or to (perhaps) sum all integers values from a file.We
must be careful here, with the particular return values of the C standard I/O functions. The functions
themselves return NULLFILE pointers, or a value of −1 at the end of a file or an error condition, but we
must be carewhenwe check these values:

#define MAXLINE 80

int i, sum;
char line[MAXLINE];

for(;;) {
fgets(line, sizeof(line), fp);
if(feof(fp))

break;

/* ... process the line just read ...*/
}
fclose(fp);

........

sum = 0;
while(fscanf(fp, "%d", &i) == 1)

sum += i;
fclose(fp);

CS23 Spring’07 − An introduction to the C99 programming language page 21

The C/Operating System Interface

Operating systems, such as UNIX , LINUX , Mac-OSX, and Windows-XP, will call C programs with two
parameters:

• aninteger argument count (argc),
• an array of pointers to character strings (argv), and

Notice that in many previous examples we’ve provided amain() without any parameters all.Remember
that C does not check the length and types of parameter lists of functions which it does ‘‘not know’’ about −
ones that have not been prototyped.In addition, the functionmain() has no special significance to the C
compiler. Only the linker requiresmain() as the apparent starting point of any program. MostC
programs you see will only have the first two parameters.

int main(int argc, char *argv[])

-> explain char *argv[]
declare argv as array of pointer to char

A common activity at the start of a c program is to search the argument list for command-line switches
commencing with a ’−’ character. Remaining command-line parameters are often assumed to be filenames:

int main(int argc, char **argv)
{

argv0 = (argv0 = strrchr(argv[0],’/’)) ? argv0+1 : argv[0];
argc--; argv++;
while((argc > 0) && (*argv[0] == ’-’)) {

switch (*argv[1]) {
case ’d’ : dflag = !dflag;

break;
default : argc = 0;

break;
}
argc--; argv++;

}
if(argc < 0) {

fprintf(stderr, "Usage : %s %s\n",argv0,usage);
exit(1);

}
if(argc > 0)

while(argc > 0) {
process(*argv);
argv++; argc--;

}
else

process(NULL);
return(0);

}

CS23 Spring’07 − An introduction to the C99 programming language page 22

Pointer s in C

The C programming language has a very powerful feature, and if used incorrectly a very dangerous feature,
which allows a program (at run-time) to access its own memory. This ability is well supported in the
language through the use ofpointers. There is much written about the power and expressiveness of C’s
pointers, and much (more recently) written about Java’s lack of pointers. More precisely, Java doeshave
pointers, termedreferences, but the references to Java’s objects are so consistently and carefully constrained
at both compile and run-time, that very little can go wrong.

C has both ‘‘standard’’ variables and structures, and pointers to these variables and structures (Java only has
references to objects, and it is only possible to manipulate the computer’s memory used to hold the objects,
by using references).C’s drawback is that while the pointers allow us to easily refer to scalar variables and
aggregate structures, C has very little support to prevent us accessing anything else (accidently) at run-time.
All speed advantages provided by the availability of pointers, can be trivially consumed by the time taken
to debug a program incorrectly using pointers.

C’s pointers allow us to refer to theaddressof a variable rather than its value. If this were all that were
possible, we may be able to get away without using pointers at all.‘‘ Unfortunately’’ parameters to C’s
functions may only be passed by value, and so a rudimentary understanding of C’s pointers is needed to use
‘‘ pass-by-reference’’ parameter passing in C.

Consider the following example trying to interchange the value of two integer variables:

#include <stdio.h>

void swap(int i, int j)
{

int temp;

temp = i;
i = j;
j = temp;

}

int main(int argc, char *argv[])
{

int a=3, b=5;

printf("before a=%d, b=%d\n",a,b);
swap(a,b);
printf("after a=%d, b=%d\n",a,b);
return(0);

}

before a=3, b=5
after a=3, b=5

CS23 Spring’07 − An introduction to the C99 programming language page 23

Pass By Reference Using Pointers

Instead, we need to pass a ‘‘reference’’ to the two integers to be interchanged, so that the functionswap()
is actually dealing with the original variables, rather than new copies of their values (passed on C’s run-time
stack).

#include <stdio.h>

void swap(int *ip, int *jp)
{

int temp;

temp = *ip;
*ip = *jp;
*jp = temp;

}

int main(int argc, char *argv[])
{

int a=3, b=5;

printf("before a=%d, b=%d\n",a,b);
swap(&a, &b);
printf("after a=%d, b=%d\n",a,b);
return(0);

}

before a=3, b=5
after a=5, b=3

Here we’ve introduced a bit more syntax (and, typically, it uses punctuation characters).

• The address operator, &, is used to determine the (run-time) memory address of a variable. Herewe
require the memory address of the variablesi and j before passing these addresses to theswap()
function. Noticethat we are still using pass-by-value parameter passing, but that we are passing
addresses on the run-time stack.

• The two asterisks inswap() ’s formal definition indicate that the variablesip andjp arepointers, or
pointer variables, rather than just ‘‘simple’’ variables. Itis typical in C programs to append ’p’ or ’ptr’
to a variable’s name to indicate that it’s a pointer.

• The asterisks always placed in front ofip and jp in function swap() indicate that we wish to
dereferencethese variables. Insteadof using the contents of these variables (which are ‘‘meaningless’’
memory addresses) we wish to use the valuespointed toby these variables. Noticethat we may
dereference variables on ‘‘both sides’’ of an assignment expression.

CS23 Spring’07 − An introduction to the C99 programming language page 24

Pointer s To A rrays And Character Strings

One often confusing point in C is the synonymous use of arrays, character strings, and pointers. The name
of an array in C, is actually the memory address of the array’s first element. Thus the following two
assignment statements are the same, and the first is the most commonly used:

char buffer[BUFSIZ], *ptr;

ptr = buffer;
ptr = &buffer[0];

Using thecdeclprogram again:

-> explain char *ptr
declare ptr as pointer to char

If we also remember that C’s character strings are simply a contiguous series of characters which, by
convention, are terminated by a NULL character, then we can consider strings to be arrays to, and strings
may be accessed through pointers (you may wish to consider a string’s first character as being stored at the
memory address of the array of characters.We can thus write:

int n;
char *hex_values = "0123456789abcdef";

n = hex_values[...expression...];

/* or ... don’t do this! */

n = " 0123456789abcdef"[...expression...];

We will often see the use of character pointers (used to strings), and character arrays (with assumed
terminating NULL characters, used interchangeably:

int my_strlen(char *str)
{

int len = 0;

while(s tr[len] /* != ’\0’ */)
++len;

return(len);

CS23 Spring’07 − An introduction to the C99 programming language page 25

Pointer Arithmetic

Another confusing facility in C is the use ofpointer arithmeticwith which we may advance a pointer to
point to successive memory locations at run-time. It would make little sense to be able to ‘‘point
anywhere’’ i nto memory, and so C automatically adjusts pointers (forwards and backwards) by values that
are multiples of the size of the base types (or user-defined structures) to which the pointer points(!).

We specify pointer arithmetic in the same way we specify numeric arithmetic, using +, −, and pre- and
post- increment and decrement operators (multiplication and division make little sense).We may thus
traverse an array with pointer arithmetic:

int my_strlen(char *str)
{

int len = 0;

while(* str /* != ’\0’ */) {
++len;
++str;

}
return(len);

}

Notice that we are simply ‘‘moving the pointer along’’, we are not modifying what it pointers to, simply
accessing adjacent memory locations until we reach one containing the NULL character. This example is a
little simple, because the character pointer will only be advanced one memory location (one byte) at a time,
as a character is one byte long. Alternatively, consider the five equivalent examples:

int sum_array(int *values, int n)
{

int i, *ip;
int sum = 0;

for(sum=0, i=0 ; i<n ; ++i)
sum += values[i];

for(sum=0, i=0 ; i<n ; ++i)
sum += *(values+i);

for(sum=0, ip=values; ip<&values[n] ; ++ip)
sum += *ip;

for(sum=0, i=0 ; i<n ; ++i) {
sum += *values;
++values;

}
for(sum=0, i=0 ; i<n ; ++i)

sum += *values++;
return(sum);

}

CS23 Spring’07 − An introduction to the C99 programming language page 26

Pointer Arithmetic, continued

Unfortunately, we frequently see an excessive use of pointer arithmetic in C with programmers trying to be
too smart to speed up their programs.For example:

char *my_strcpy(char *dest, char *src)
{

char *d = dest;

while(*dest++ = *src++);
return(d);

}

With code such as this, in which we are trying to copy all characters fromsrc to dest until we reach the
NULL character, we always have in the back of our minds the concern as to whether the NULL character is
in fact copied from the end ofsrc to dest , and thus legally terminatesdest .

Sor ting An Arra y Of Values

A frequently required operation is to sort an array of, say, integers or characters. The standard C library
provides a generic function namedqsort() to help with this, but we must write a pointer-based function
to perform the comparison of the array’s elements:

#include <stdlib.h>

#define N 100

int compare(const int *ip, const int *jp)
{

return(*i - *j);
}

int main(int argc, char *argv[])
{

int i;
int values[N];

srandom(getpid());
for(i=0 ; i<N ; i++)

values[i] = random();
qsort((void *)values, (size_t)N,

sizeof(values[0]), compare);
....

return(0);
}

CS23 Spring’07 − An introduction to the C99 programming language page 27

Dynamic Memor y Allocation

The functionmalloc() returns a requested number of bytes from the operating system’s heap. If
insufficient memory is available malloc returnsNULL. When we are finished using the space returned by
malloc() , our program should be returned to the heap with a call tofree() . If a process continues to
malloc() memory and fails to deallocate it usingfree() , the process will quickly ‘‘run out of
memory’’ and terminate ungracefully.

Unlike Jav a, C has no garbage collection of heap objects, and so programs must be very careful about
deallocating memory that is no longer required.

Consider the following example which allocates space for a new copy of a giv en string. Thisis very similar
to the standard function namedstrdup() :

char *newstr(const char *s)
{

void *malloc(unsigned int nbytes);
char *p;

if((p=malloc(strlen(s)+1)) == NULL) {
fprintf(stderr,"out of memory!\n");
exit(1);

}

strcpy(p,s);
return(p);

}

malloc() is also frequently used to allocate memory for structures.

#define NEW(t) malloc(sizeof(t))

struct l {
char *line;
struct l * next;

};

struct l * hd = malloc(sizeof(struct l));

fgets(buf, MAX, fp);
while(! feof(fp)) {

p = NEW(struct l);
p->line = newstr(buf);
p->next = hd;
hd = p;
fgets(buf,MAX,fp);

}

CS23 Spring’07 − An introduction to the C99 programming language page 28

